Magnetic properties of Y(Co_xNi_{1-x})₃ compounds

E. BURZO^{*}, I.G. DEAC, R. TETEAN, I. CREANGA^a

Faculty of Physics, Babes-Bolyai University, RO-400084, Cluj Napoca, Romania ^aTechnical University, Bucharest, Romania

The crystal structure and magnetic properties of $Y(Co_xNi_{1-x})_3$ compounds are reported. Some metamagnetic transitions involving nickel atoms were shown. These were correlated with the combined effects of exchange and external fields.

(Received August 1, 2008; accepted August 14, 2008)

Keywords: Intermetallic compounds, Magnetic properties, Metamagnetic transitions

1. Introduction

The YCo3 and YNi3 compounds crystallize in a PuNi₃-type structure, having space group R3m. In this lattice, the 3d transition metals occupy 3b, 6c and 18h sites [1]. The cobalt, M_{Co} , and nickel, M_{Ni} , moments are dependent on their local environments. By neutron diffraction studies values $M_{Co} = 0.55 \ \mu_B \ (3b), \ 0.79(6c)$ and 0.04 μ_B (16h) [2] and $M_{Ni} = 0.057 \ \mu_B$ (3b), 0.073 μ_B (6c) and 0.065 $\mu_{\rm B}$ (18 h) [3] were determined. From magnetic measurements only their mean values can be obtained. The Co magnetic instability is at the origin of the two metamagnetic transitions, at 60 T and 82 T, which were evidenced in magnetization curves of YCo₃, at 4.2 K. At 60 T, the Co subsystem goes from a low magnetic state to an intermediate one and then, at the second transition, to a strong magnetic state [4]. This transition can be also observed under the action of molecular field in $(Gd_xY_{1-x})Co_3$ system [5] or in $(Gd_xY_{1-x})_2Co_7B_3$ [6] one. A transition of nickel from non-magnetic to magnetic state, in $(Gd_xY_{1-x})Ni_5$, was shown to occurs at $\cong 35$ T [7].

Previous study on $Y(Co_xNi_{1-x})_3$ system showed an interesting behaviour [8]. The magnetizations decrease both from rich cobalt and rich nickel regions and have a minimum for x = 0.2. This compound was suggested to be nonmagnetic. In the following we report some metamagnetic transitions in $Y(Co_xNi_{1-x})_3$ system in rather lower fields and we discuss the reason for their appearance.

2. Experimental

The $Y(Co_xNi_{1-x})_3$ compounds were prepared by arc melting the constituent elements in a purified argon atmosphere. A small excess of yttrium was used to compensate the loss of weight during melting. The samples were remelted several times in order to ensure a good homogeneity. The alloys were then heat treated at 950 °C for 10 days.

The X-ray analyses show that the compounds are single phases and crystallize in a PuNi₃-type structure,

having R3m space group, in all the composition range. The lattice parameters are only little dependent on composition – Fig.1. This behaviour may be correlated with close radius of transition metal atoms.

Fig. 1. Composition dependencies of lattice parameters.

The magnetic measurements were performed in the temperature range 5–300 K and fields up to 9 T. The saturation magnetizations, M_s , were determined from magnetization isotherms, according to the approach to saturation low, $M = M_s(1-a/H)+\chi_oH$. We denoted by a the coefficient of magnetic hardness and χ_o is a field independent susceptibility. The Curie temperatures were determined from thermal variations of magnetization in low filed (0.01 T).

3. Experimental results and discussion

Some magnetization isotherms, determined in $Y(Co_{0.8}Ni_{0.2})_3$ compound, are plotted in Fig.2. At 5 K, a transition towards a state having somewhat higher magnetization is shown, at $\mu_0 H \cong 6$ T. No such behaviour was observed at higher temperatures. Similar results were

obtained for compounds with x = 0.9 or 0.6 -Fig.3. The transitions are relatively large and take place at near the same external field. The increase of the magnetizations are relatively small, of 0.014 μ_B (x=0.9), 0.07 μ_B (x = 0.8) and 0.036 μ_B (x=0.6) – Fig.3.

Metamagnetic transitions were observed for cobalt in YCo₃ [4] or ThCo₅ [9]. In Y(Co_xNi_{1-x})₃ system, the transitions are not so sharp as in ThCo₅. The larger width of transitions may be correlated with the distribution of internal fields, resulting from slightly different local environments of transition metal atoms in the $R\overline{3}m$ -type lattice.

Fig. 2. Magnetization isotherms determined in $Y(Co_{0.8}Ni_{0.2})_3$ compound.

Fig. 3. Metamagnetic transitions, at 5 K, in $Y(Co_xNi_{1-x})_3$ compounds with x = 0.8 and 0.6.

The observed transition in $Y(Co_xNi_{1-x})_3$ system can be correlated with nickel atoms. There is evidence that the metamagnetic transition in YCo_3 is located in field of 60 T [4]. An itinerant electron metamagnetic transition was also evidenced in field of 70 T in rare-earth cobalt Laves phases compounds [10]. Thus, the observed increase in magnetization, shown at 6T, cannot be correlated with cobalt. The nickel atoms are more sensitive to exchange interactions, and such a transition was estimated in $(Gd_xLa_{1-x})Ni_5$ to take place in smaller exchange fields, of 35 T [7].

The neutron diffraction studies performed on $Er(Fe_xNi_{1-x})_3$ system showed that Ni atoms prefer 18h sites [11]. The above preference was confirmed also in $Y(Co_xNi_{1-x})_3$ system by Rietveld-type analyses. In these sites, nickel atoms have a small magnetic contribution as already mentioned. The induced moment is of the same order of magnitude as the moment at Ni 18h site. In Y(Co_xNi_{1-x})₃, from induced magnetization per formula unit and taking into account the nickel content, mean values of 0.05 μ_B /Ni atom for compound with x = 0.9, 0.1 μ_B /Ni atom for x=0.8 and 0.03 μ_B /Ni atom for composition having x = 0.6 are induced. This increase is similar as the induced nickel moment when replacing Y by Gd in $(Gd_xY_{1-x})Ni_3$ system [12]. We estimated the mean exchange field, Hexch, in the Y(Co_xNi_{1-x})₃ system. For the compounds with $x \ge 0.8$ this is close to critical field expected to induce an additional nickel moment [7]. Consequently, the addition of external field allowed this transition. In case of compound with x =0.6, somewhat smaller mean exchange field was determined. Thus, only a fraction of nickel atoms, favoured by their local environments, will be involved in such transition and this is reflected in a smaller change in magnetization as compared to $x \ge 0.8$ compounds. For higher nickel content than above, no such transitions were observed in Y(Co_xNi_{1-x})₃ system.

Fig. 4. Thermal variation of magnetizations.

Fig. 5. Composition dependence of magnetization, at 5 K.

The temperature dependencies of magnetizations for selected samples are plotted in Fig.4. Both the saturation magnetizations and Curie temperatures decrease up to x = 0.2. At this composition a minimum in the magnetization is shown in Fig.5.

Fig. 6. Magnetization isotherm, at 5K, for Y(Co_{0.2}Ni_{0.8})₃ compound.

The magnetization isotherm, at 5 K, for the $Y(Co_{0.2}Ni_{0.8})_3$ compound, is plotted in Fig.6. There is a linear increase of magnetization up to $\mu_0H = 5$ T. For higher fields the magnetization remains constant and has a value of 0.018 $\mu_B/f.u.$ The above data suggest that the $Y(Co_{0.2}Ni_{0.8})_3$ is a very weak ferromagnet.

The composition dependence of the magnetization, at 5K, may be qualitatively explained assuming that a local minimum in the density of states exist at x=0.2. When increasing both cobalt and nickel content, the Fermi level, is shifted to regions having higher density of states.

We conclude that in $Y(Co_xNi_{1-x})_3$ system the nickel shows weak metamagnetic transitions as result of simultaneous presence of exchange and external fields.

Acknowledgements

The authors gratefully acknowledge the financial support from the Romanian National Research, Development and Innovation Programme CERES in the frame of the Excellency Research Project COSTEMSEC 2-CEEX-06-11-90 / 2006.

References

- [1] E.Burzo, A. Cheelkowski, H.R. Kirchmayer.
 "Compounds between rare earth elements and 3d, 4d and 4d elements" Landolt Bornstein Hadbuch, 19(2), 172.
- [2] E. Krèn, J. Schweizer, F. Tasset, "Polarized-Neutron-Diffraction Study of Magnetic Moments in Yttrium-Cobalt Alloys" Phys. Rev. 186, 479 (1969).
- [3] D.Gignoux, R.Lemaire, P. Molho, F. Tasset, "Onset of magnetism in the yttrium-nickel compounds : II. Very weak itinerant ferromagnetism in YNi₃", J. Magn. Magn. Mat. **21**, 307 (1980).
- [4] T. Goto, H. A. Katori, T. Sakakibara, M. Yamauchi, "Successive phase transitions in ferromagnetic YCo₃", Physica B 177, 255 (1992).
- [5] E.Burzo, D. Seitabla, "On the induced cobalt moments in (Gd_xY_{1-x})Co₃ compounds", Solid State Commun. 37, 663 (1981).
- [6] R Ballou, E.Burzo, V. Pop, A. Pentek, "Magnetic properties of (Gd_xY_{1-x})₂Co₇B₃ compounds, J. Appl. Phys. **73**, 5995 (1993).
- [7] E.Burzo, L. Chioncel, I Costina, S.G. Chiuzbaian, "Electronic structure and magnetic properties of Gd_xLa_{1-x}Ni₅ system" J. Phys.: Cond. Matter. 18, 4861 (2006).
- [8] K. N. R. Taylor, C. A.Poldy, "Structural and magnetic properties of pseudobinary phases in yttrium 3d transition metal phase diagrams" J. Phys. F.: Metal Phys. 5, 1593 (1975).
- [9] D. Givord, J. Laforset, R. Lemaire, "Polarized neutron study of the itinerant electron metamagnetism in ThCo₅" J. Appl. Phys. **50**, 7489 (1979).
- [10] E.Burzo, "Magnetic properties and resonance studies of Gd(Co_xAl_{1-x})₂ compounds", J. Less Common Met. 77, 251 (1981).
- [11] D. Tharp, Y. Yang, W. James, W. Yelon, D. Xie, J. Yang, "Atomic and magnetic structure of Er(Fe_{1-x}Ni_x)₃ intermetallic compounds", J. Appl. Phys. **61**, 4249 (1987).
- [12] E. Burzo, J. Laforest, "Sur le comportement magnetique du nickel dans des composes avec le gadolinium", C.R. Acad. Sci. Paris B 274, 114 (1972).

^{*}Corresponding author: burzo@phys.ubbcluj.ro